You are here

PlantCLEF 2019

banniere


News
A direct link to the overview of the task:
Overview of LifeCLEF Plant Identification Task 2019: diving into Data Deficient Tropical Countries, Hervé Goëau, Pierre Bonnet, Alexis Joly, LifeCLEF 2019 working notes, Lugano, Switzerland
Link to the data
https://lab.plantnet.org/LifeCLEF/PlantCLEF2019/

Registration and data access

  • Each participant has to register on (https://www.crowdai.org) with username, email and password. A representative team name should be used
    as username.
  • In order to be compliant with the CLEF requirements, participants also have to fill in the following additional fields on their profile:
    • First name
    • Last name
    • Affiliation
    • Address
    • City
    • Country
  • Once set up, participants will have access to the CrowdAI PlantCLEF 2019 challenge's page

  • Usage scenario

    Automated identification of plants has improved considerably in the last few years. In the scope of LifeCLEF 2017 and 2018 in particular, we measured impressive identification performance over 10K species. However, these 10K species, mostly living in Europe and North America, only represent the tip of the iceberg. The vast majority of the species in the world (~369K species) actually lives in data deficient countries and the performance of state-of-the-art machine learning algorithms on these species is unknown and presumably much lower. Thus, the main novelty of the 2019 edition of PlantCLEF will be to extend the challenge to the flora of such data deficient countries. Thus, the main focus of the 2019 edition of PlantCLEF will be to evaluate automated identification on the flora of such data deficient regions.

    Challenge description

    The goal of the task is return the most likely species for each observation of the test set (an observation being a set of images of the same individual plant and the associated metadata such as date, gps, author). A small part of the observations in the test set will be re-annotated by several experts so as to allow comparing the performance of the evaluated systems with the one of highly skilled experts.

    Data Collection

    We provide a new dataset of 10K species mainly focused on the Guiana shield and the Amazon rainforest (known to be the largest collection of living plants and animal species in the world). The average number of images per species in that new dataset will be much lower than the dataset used in the previous editions of PlantCLEF (about 10 vs. 100). Many species will contain only a few images and some of them might even contain only 1 image.

    Metric

    The main evaluation metric will be the top-1 accuracy.

    Results

    A total of 6 participating groups submitted 26 runs. Thanks to all of you for your efforts!


    plantclef2019results


    Team run Filename Top1 (test set identified by experts) Top1 (whole test set)
    Holmes Run 2 a7624a2f-2273-46ed-afc5-4b59c133f3c6_run_multilabel_230646_inceptionv4_inceptionresv2 0,316 0,247
    Holmes Run 3 6dc12138-727d-4601-adeb-559715711fc7_run_multilabel_230646_inceptionres_v2 0,282 0,225
    Holmes Run 1 44a0573d-57a5-4330-bbc8-4e495fa5584d_run_multilabel_230646_4850_iter101500 0,248 0,222
    CMP Run 7 506e467a-e71c-4fcb-970e-8473446075aa_1ensemble_10_sum_uniform_prior 0,085 0,078
    CMP Run 2 c76bec52-f36a-4a1d-a81d-83d89e69ac79_ensemble_5_sum 0,077 0,061
    CMP Run 6 60293483-f686-40b5-96bd-e74fa7cbfcb5_1ensemble_10_sum 0,068 0,057
    CMP Run 1 8f3ca4e6-8ef0-4caa-89dd-17a52b5021bf_ensemble_4_sum 0,068 0,069
    CMP Run 3 ca5dba75-d751-4a03-9d61-e39cc17286b4_ensemble_5_sum_uniform_prior 0,068 0,066
    CMP Run 4 a4e2e0a4-3508-45cb-bc73-2ca56babe832_ensemble_5_sum_map_prior 0,060 0,053
    MRIM Run 1 e72917e4-d038-4f43-9a4f-1ce6c5f63e7b_run_avg_max_1 0,043 0,042
    MRIM Run 8 47f77d8d-c6cd-4277-aae9-876e5573420d_run_max_avg_05 0,034 0,046
    MRIM Run 7 725e44e3-cd14-42fc-8aba-58178fcc75ba_run_avg_avg_05 0,026 0,042
    datvo06 Run 1 7ae276a3-8f75-4fb5-b516-151dcad3dd3a_run 0,026 0,043
    CMP Run 5 bfa3f20a-945a-4fb2-ae38-284ef0cf10bd_ensemble_5_sum_mle_prior 0,026 0,054
    MRIM Run 10 f9de7751-3a4c-48e2-b272-823be8512745_run_final 0,026 0,034
    MRIM Run 5 497f4958-a5e8-4e06-ad19-0bcf29516d28_run_avg_avg_025 0,017 0,036
    MRIM Run 3 571ed543-96c0-4cae-9ba2-23108f3c358a_run_avg_max_05 0,017 0,030
    MRIM Run 2 763e921f-e397-44cd-87d1-5415b834959d_run_avg_avg_025 0,017 0,036
    MRIM Run 6 89025713-abdd-4960-a657-fbd3815c4551_run_max_max_025 0,017 0,028
    MRIM Run 9 c723c2a2-0b22-4d0d-be0c-95fbf0f9b3d9_run_max_max_05 0,017 0,031
    MRIM Run 4 d8d4f57d-cbb5-4441-be87-2a565b1133a9_run_avg_max_025 0,009 0,027
    MLRG_SSN Run 1 0338a444-4279-4251-a7cc-680fc32b88a8_submission 0,000 0,000
    Leowin Run 1 4149b55a-6b52-4346-a5ec-9d561f18c4f3_test_updated 0,000 0,000
    MLRG_SSN Run 2 4ce98d47-4c98-466f-8b8c-42926841ec40_sub_resnet_50_try 0,000 0,000
    MLRG_SSN Run 3 63f5d4cc-627b-4bdc-a94c-2b600b0918fd_sub_resnet_50_all 0,000 0,012
    Leowin Run 2 9d2a0e45-1766-40ae-838f-0546bd58b219_test_updated 0,000 0,000
    Expert 1 Expert_1.csv 0,675 -
    Expert 2 Expert_2.csv 0,598 -
    Expert 3 Expert_3.csv 0,376 -
    Expert 4 Expert_4.csv 0,325 -
    Expert 5 Expert_5.csv 0,154 - -

    The following figure reports the comparison of the Top-1 accuracy between the "machines" and 5 human experts of the Amazonian and French Guina flora.


    plantclef2019resultsmanvsmachine


    Complementary results

    Complementary to the main metric, the next table and figures report the results according to different metrics (Top-3, Top-5, Mean Reciprocal Rank) :
    - the Top-3 accuracy allows a fair comparison between the machines and the experts. The humans could propose up to three species per plant while machines could propose up to one hundred. In spite of this the Top-5 accuracy is reported for both human experts and machine
    - as a reminder the Mean Reciprocal Rank (MRR) is a statistic measure for evaluating any process that produces a list of possible responses to a sample of queries ordered by probability of correctness. The reciprocal rank of a query response is the multiplicative inverse of the rank of the first correct answer. The MRR is the average of the reciprocal ranks for the whole test set:

    MRR formula

    where |Q| is the total number of plant occurrences in the test set.

    Team run Top1 (test set identified by experts) Top1 (whole test set) Top3 (test set identified by experts) Top5 (test set identified by experts) Top5 (whole test set) MRR (test set identified by experts) MRR (whole test set)
    Holmes Run 2 0,316 0,247 0,376 0,419 0,357 0,362 0,298
    Holmes Run 3 0,282 0,225 0,359 0,376 0,321 0,329 0,274
    Holmes Run 1 0,248 0,222 0,325 0,368 0,325 0,302 0,269
    CMP Run 7 0,085 0,078 0,145 0,197 0,168 0,124 0,111
    CMP Run 2 0,077 0,061 0,145 0,188 0,162 0,117 0,097
    CMP Run 6 0,068 0,057 0,154 0,188 0,163 0,112 0,096
    CMP Run 1 0,068 0,069 0,145 0,171 0,158 0,107 0,099
    CMP Run 3 0,068 0,066 0,128 0,188 0,156 0,110 0,099
    CMP Run 4 0,060 0,053 0,128 0,162 0,160 0,097 0,090
    MRIM Run 1 0,043 0,042 0,051 0,060 0,088 0,055 0,063
    MRIM Run 8 0,034 0,046 0,068 0,103 0,102 0,057 0,068
    MRIM Run 7 0,026 0,042 0,085 0,094 0,096 0,053 0,065
    datvo06 Run 1 0,026 0,043 0,051 0,060 0,086 0,041 0,061
    CMP Run 5 0,026 0,054 0,085 0,085 0,119 0,050 0,078
    MRIM Run 10 0,026 0,034 0,068 0,068 0,085 0,047 0,057
    MRIM Run 5 0,017 0,036 0,043 0,077 0,082 0,039 0,058
    MRIM Run 3 0,017 0,030 0,060 0,077 0,088 0,043 0,054
    MRIM Run 2 0,017 0,036 0,043 0,077 0,082 0,039 0,058
    MRIM Run 6 0,017 0,028 0,051 0,077 0,078 0,037 0,049
    MRIM Run 9 0,017 0,031 0,043 0,068 0,088 0,039 0,055
    MRIM Run 4 0,009 0,027 0,060 0,077 0,077 0,038 0,049
    MLRG_SSN Run 1 0,000 0,000 0,000 0,000 0,000 0,000 0,000
    Leowin Run 1 0,000 0,000 0,000 0,000 0,001 0,000 0,000
    MLRG_SSN Run 2 0,000 0,000 0,000 0,000 0,000 0,000 0,000
    MLRG_SSN Run 3 0,000 0,012 0,000 0,009 0,027 0,004 0,021 -
    Leowin Run 2 0,000 0,000 0,000 0,000 0,001 0,000 0,000 -
    Expert 1 0,675 - 684 0,684 - 0,679 -
    Expert 2 0,598 - 0,607 0,607 - 0,603 -
    Expert 3 0,376 - 0,402 0,684 - 0,402 -
    Expert 4 0,325 - 0,530 0,530 - 0,425 -
    Expert 5 0,154 - 0,154 0,154 - 0,154 -



    The graphs below report the "machines" results only with the 3 different metrics :
    plantclef2019resultstop1plantclef2019resultstop5plantclef2019resultsmrr



    The graphs below report the results of "machines" vs the humain experts according to the Top-1, Top-3 and Top-5 accuracies:
    plantclef2019resultsmanvsmachinetop1plantclef2019resultsmanvsmachinetop5plantclef2019resultsmanvsmachinemrr


    Late submission out of the official evaluation campaign

    The CMP team encountered a bug when creating the run files. Here are the results that the team could have obtained with their methods explained in their working note. Officially the Holmes team remains the winning team of the challenge.
    erratum1erratum2