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Domain Adaptation At Xerox

Transportation, image-based solutions
I Adapt learning components under data distribution

change, without a costly re-annotation
I Changes caused by scene illumination, view angle,

background
• Daylight to night, from inside to outside

• From one parking to another, other cameras, etc.
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ImageCLEF’14 Domain Adaptation Challenge

Domain adaptation scenario:
I Multiple source domains
I Same labels between the source and the target domains
I Limited number of annotated data in the target domain

I Sources:
• Caltech (C)
• ImageNet (I)
• Pascal (P)
• Bing (B)

I Target:
• SUN (S)
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Challenge setup

I 12 common classes:
• airplane, bike, bird, boat, bus, car, ...

I No access to images
I BOV features provided only

• 600 labeled features from each source (C, I, P, B)
• 60 labeled and 600 unlabeled features from target (S)

I Source and target domains are semantically relevant but
different

I Target feature distribution changed between phases 1/2

Build a recognition system for target domain by leveraging the
knowledge from source domains
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Domain adaptation methods
Instance Transfer

I Instance weighting in source domain (Dai et al. 2007, Xu
2012)

I Selecting landmarks in source domain (Gong 2013)
Feature Space Transformation

I Unsupervised transformation of domains
• based on PCA projections (Gopalan et al. ICCV11, Gong et

al. CVPR12, Fernando et al. ICCV13, Baktashmotlagh et
al. ICCV13)

I Learning transformation by exploiting class labels
• based on metric learning (Zha et al. IJCAI09, Saeko et al.

ECCV10, Kulis et al. CVPR11, Hoffman et al. ECCV12)
• Some methods exploit unlabeled target instances (e.g.

Duan et al. CVPR09, Saha et al. ECML11, Tomassi and
Caputo ICCV13)

.
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XRCE approach

I Individual methods
• Brute force: SVM cross validation

with all combinations

• Instance Weighting: Instance
transfer from sources to target
domain using Boosting trick

• Space transformation: metric
learning-based domain adaptation
to push together the same-class
instances from different domains

.
I Ensemble techniques to aggregate

individual predictions
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Brute Force
I NSC = 2N

S − 1 = 15 source combinations SCi ,
I For each source combination SCj :

• concatenate the target train set Tl with sources SCj

• train SVM in a cross validation
I Multi-class SVM

• one kernel and same parameters for all classes
I Binarised one-against-all SVM

• The best classifier for each class cj

• A specific set of parameter values, kernels and source
combinations

• For an unseen sample xi , take the classifier with the
highest confidence

ŷbsvm = argmax
cj∈Y

f cj
bsvm(xi).
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Instance Transfer with AdaBoost

I Transfer AdaBoost is an extension of Adaboost to Transfer
learning

I boost the accuracy of a weak learner by carefully adjusting
the weights of training instances and to learn a classifier

I In TrAdaboost:
• Target training instances are weighted as in AdaBoost

• Source training instances are weighted differently

• Wrongly predicted source instances are the most dissimilar

• Their weights decrease to weaken their impact
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Transfer Adaptive Boosting with one source
Require: Target training set Tt = (Xt ,Y ); source training set Ts = (Xs,Y );

Learner; the number of iterations M.
Ensure: Target learner f : Xt → Y .
1: Initial weights: w1

T = (w1
t1 , . . . ,w

1
tNt

), w1
S = (w1

s1 , . . . ,w
1
sNs

),

2: Set w = (wT ,wS), β = 1/(1 + 2
√

ln Nt/M) and T = (Tt ,Ts).
3: for r = 1, . . . ,M do
4: Normalize wr = wr/|wr |.
5: Call Learner on the training set T with wr to find fr : X → Y
6: Calculate error of hr on Tt :

εr = min

(
1
2 ,

1∑Nt
i=1 w r

ti

∑n
i=1 w r

ti · [[fr (x
t
i ) 6= yi ]]

)
.

7: Set βr = 1/2 log((1− εr )/εr ); Γr = 2(1− εr ).
8: Update the weight vectors:

w r+1
sj

= Γr w r
sj

exp(−β [[fr (xs
j ) 6= yj ]]), xs

j ∈ Xs,

w r+1
ti

= w r
ti exp(2βr [[fr (xt

i ) 6= yi ]]), xt
i ∈ Xt .

9: end for
10: Output the aggregated estimate ftra(x) =

(∑M
r=1 β

r fr (x)
)

.
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Transfer Adaptive Boosting: Two moons
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The Nearest Class Mean (NCM) classifier1

The NCM assigns an image to the closest class mean:

µc =
1

|{xi |yi = c}|
∑

xi∈{xi |yi =c}
xi

Can be seen as the posterior of a GMM with wc = 1
Nc

and Σ = I :

p(c|xi ) =
wcp(xi |c)∑Nc

c′=1 w ′cp(xi |c′)
=

wcN (xi ,µc , I)∑Nc
c′=1 w ′cN (xi ,µc′ , I)

1
T. Mensink, J. Verbeek, F. Perronnin and G. Csurka, Distance-based image classification: Generalizing

to new classes at near zero cost. PAMI 35(11), 2013
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ML for NCM2

Learning a projection W that maximizes the NCM accuracy:

p(c|xi ) =
wcN (Wxi ,Wµc ,Σ)∑
c′ w ′cN (Wxi ,Wµc′ ,Σ)

=
exp

(
− 1

2 dW (xi ,µc)
)∑

c′ exp
(
− 1

2 dW (xi ,µc′ )
)

where dW (xi ,µc) = ‖W (xi − µc)‖2 and Σ = (W>W )−1.

2
T. Mensink et al., Distance-based image classification, PAMI 2013
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The Nearest Class Multiple Centroids (NCMC)3

It extends the NCM by considering multiple centroids mj
c per class.

I The model becomes a mixture of GMMs:

p(c|xi ) =
wc
∑

j wjN (Wxi ,Wmj
c ,Σ)∑

c′ w ′c
∑

j wjN (Wxi ,Wmj
c′ ,Σ)

,

with wc = 1
Nc

and wj = 1
Nj

and shared Σ = (W>W )−1.

3
T. Mensink et al., Distance-based image classification, PAMI 2013
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Domain Specific Class Means (DSCM)

I Mixture of GMM:

p(c|xi ) =

∑
d wdN (Wxi ,Wµc

d ,Σ)∑
c′
∑

d wdN (Wxi ,Wµc′
d ,Σ)

=

∑
d wd exp

(
− 1

2 dW (xi ,µ
c
d )
)∑

c′
∑

d wd exp
(
− 1

2 dW (xi ,µ
c′
d )
)

with
I domain-specific class means µc

d , instead of clustering.
I domain-specific weights wd , instead of 1

Nd
.
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Heterogeneous set of classifiers
Combine outputs of multiple classifiers of 3 different types

I Pool F of classifiers F = {f1, . . . , fNf }, with class scores/
probabilities

I Unweighted majority voting (UMV)

c∗ = argmaxc∈Y

∑
fk∈F

[[gk (fk ,xt
i ) = c]]

• In probabilistic setting, the class with the highest probability:

c∗ = argmaxc∈Y

∑
fk∈F

P(yi = c|fk (xt
i ))

I Weighting majority voting (WMV), weights proportional to
classifier’s accuracy

P(yi = c|xt
i ) =

∏
c′′∈Y P

(
yi = c|g(fk ,xt

i ) = c′′
)∑

c′∈Y
∏

c′′∈Y P
(
yi = c′|g(fk ,xt

i ) = c′′
)
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Evaluation setup
I Test individual and ensemble methods on phase 1
I Select best strategies to apply on phase 2
I Divergence measure:

• Deviation of prediction vector from equi-weighted class
vector

div =
∑
c∈Y

∣∣∣∣Card({i|g(f , xt
i ) = c})−

N
Nc

∣∣∣∣
• N is number of test images, Nc is the number of classes
• {i |g(f ,xt

i ) = c} is target instances with predicted c

I Under equal class assumption, minimize the divergence.
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Challenge Results

Place Score Acc Run Name Divgrc Comment
1 228 38.0 combin6 Np20 108 UMV
2 228 38.0 combin3 Np18 108 UMV
3 226 37.67 combinAll6 Np19 164 UMV
4 217 36.17 combin6A Np19 78 UMV + min div
5 214 35.67 MLNCM MLDA 128 174 ML
6 212 35.33 combinAll7A Np19 134 WMV
7 208 34.67 combin8A Random Np25 78 WMV + min div
8 185 30.83 MLNCMC ML 128 168 ML
9 182 30.33 combin2 Np10 134 TrA+UMV

10 158 26.33 svmBoost Mul Power f60 186 TrA

Table: Ten runs submitted by XRCE team.
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Submission analysis

Individual DA methods
I Brute force performed poorly as expected, but but

participated in various ensembles
I TrAdaboost and Metric Learning performed reasonably well

Ensembles of heterogeneous classifiers
I Is a right strategy
I Unweighted majority vote (UMV) on a small selection of

classifiers performed the best
I Weighted majority vote (WMV) works well on large sets of

classifiers but underperforms against the UMV
I Divergence minimization did not play any important role
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Conclusion

Using heterogeneous methods for domain adaptation is a right
strategy

I Image classification in target domain can benefit a
knowledge transfer from source domains

I Ensembles of heterogeneous classifiers with different
majority votings yield the high accuracy

I Won the ImageCLEF Domain Adaptation competition
I New directions

• Semi-supervised Learning in target domain

• Both Instance Reuse and Metric Learning
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