Running and Configuring the Baseline System of ImageCLEF 2013's
Personal Photo Retrieval Subtask

Prerequisites

The following document assumes that you have followed the build instruction published
onwww.imageclef.org/2013/photo/retrieval.

We assume that you have created a subdirectory below the extracted sources called
build/, which we will refer to as builddir in the following text.

After running "make install", you will end up with a directory structure as follows.
The most important subdirectories are set bold.

builddir applications
(contains all executables)
dbis
(build files, can be ignored)

include
(header files if you want to compile against the system)

libs
(the dynamic libraries of the system)

plugins
(plugins providing feature extractors etc.)

tests
(various unit test, can be ignored)

If you are interested in the full documentation of the system, please use doxygen with
the distributed Doxyfile to create it.

In order to run the system, you have to make the dynamic libraries known to your OS,
e.g, by addingbuilddir/1libs to DYLD LIBRARY PATH in case of Mac OS X.
Additionally, you will have to create a new environment variable called

PYHTIA PLUGIN_PATH that has to point to builddir/plugins, which can be
achieved as follows:

export PYTHIA PLUGIN PATH path/to/builddir/plugins/



Preparations

In this step, you will save the image collection and the query images in a structure that
can be processed with the system.

Copy the test data set to a directory that we will refer to as imagedir from now on.
Create a subdirectory called queries below imagedir in which you will store all
query images. Your resulting file hierarchy should look as follows:

imagedir file01.jpg

file02.png
file03.png

queries query01l.png

query02.jpg

Extracting the Features

In order to retrieve images, you will have to extract their low-level features first. The
tool to extract features is called extractFeatures and can be found in
builddir/applications/. Navigate to this directory.

Before you can use the feature extraction, you will have to create a configuration file by
starting extractFeatures with the parameter k:

./extractFeatures -k

You will see the following output and a file named configFE.cfg will be created in
your current directory.

Create configure file...
Done.

The configuration file configFE . c£fg is pretty self-explanatory but the following
parameters need your special attention:



IMAGE DIR

Enter the path to imagedir ending with the path separator, e.g.,
/path/to/imagedir/ if you use Un*x

COLLECTIONS  you can leave this directory unmodified. The variable contains the

DIR path that will be used for storing all extracted features and
metadata. That is, a file called collections.xml, which you
will need later.

COLLECTION Choose an arbitrary collection name, e.g., "iclef2013".

NAME

COLLECTION  Enter a UUID. We recommend to change the first digit into a 1

ID because you will need this UUID later and this UUID is easy to
remember.

PLUGIN DIR If you have properly set the environment variable
PYTHIA PLUGIN_PATH, this variable should point to
builddir/plugins. Otherwise you will have to change it
manually and set up the enivironment variable.

OUTPUT This variable should only contain dbis_xml. If you leave it

TYPES unmodified the extraction will consume more space and create
additional XML files that more or less resemble MPEG-7. For the
remainder, we will only use the dbis xml format.

FEATURES A list of features that will be extracted.

The actual contents of FEATURES will depend on your setup, e.g., if you have installed
OpenCV before. Remove all features from the list that you do not want to extract.

Please note that the local features, e.g., SURF or BRIEF, take very long to process. The
same holds true for the face detection. We recommend removing all local features and
the face detection because the latter is not fully functional yet.

The resulting set of global features looks as follows:

AutoColorCorrelogram:NoDetector

BIC:NoDetector

CEDD:NoDetector
ColorHistBorder:NoDetector
ColorHistCenter:NoDetector
ColorHistogram:NoDetector
ColorLayout:NoDetector
ColorStructure:NoDetector
ContourShape:NoDetector



DominantColor:NoDetector
EdgeHistogram:NoDetector
FCTH:NoDetector
Gabor:NoDetector
RegionShape:NoDetector
ScalableColor:NoDetector
Tamura:NoDetector

The extractor parameters are more or less self-explanatory given you have access to the
relevant papers.

After you have adjusted the configuration, you can simply start the extraction that will
automatically use your altered configFE.cfg:

./extractFeatures

If you have not changed the collections' directory in the configuration file, you will find a
new folder below the executable's path called collections/, which contains the
actual extracted feature data for your collection and the metadata file
collections.xml.

Calculating the Similarity between Query Images and the Collection

To calculate the similarity of each document in the collection with a set of query
documents, you will have to use a tool called calcSimilarities that has a lot of
parameters. We will explain the parameters below. If you need further information refer
to the online help by calling calcSimilarites --help.

calcSimilarities, its Parameters and Utilities
./calcSimilarities -i {10000000-0000-0000-0000-000000000000} -
k 100 -t ./types.lst -g ./catmap/ -0 0 -e 0 -f 0 -x 1 -m

—-c ./collections/collections.xml -r ./runs/

-i: Specifies the collection that you want to work on. You have to use the UUID that you
have defined in the step before.

-k: Defines the top-k values of the results. In the example, each result file will contain
100 documents.

-t: Specifies the path to a text file that defines the retrieval types to be used. Roughly
speaking, a retrieval type is a combination of a feature and a distance/similarity

function.

There is a utility that will create a valid retrieval type file for you: generateTypes. Call
it as follows and choose option d to get the standard set:

./generateTypes



Retrieval types (r), feature types (f) or default retrieval
types (d) ?

d

The types have been written to .../types.lst.

For our example we will modify types.1lst and remove the local features. The result
will look like this:

AutoColorCorrelogram:NoDetector Manhattan:NoDistance:NoDistance
BIC:NoDetector Euclidean:NoDistance:NoDistance

CEDD:NoDetector Euclidean:NoDistance:NoDistance
ColorHistBorder:NoDetector Euclidean:NoDistance:NoDistance
ColorHistCenter:NoDetector Euclidean:NoDistance:NoDistance
ColorHistogram:NoDetector Manhattan:NoDistance:NoDistance
ColorLayout:NoDetector ColorLayoutSpecific:NoDistance:NoDistance
ColorStructure:NoDetector_ Manhattan:NoDistance:NoDistance
ContourShape:NoDetector ContourShapeSpecific:NoDistance:NoDistance
DominantColor:NoDetector Euclidean:EMD:NoDistance
EdgeHistogram:NoDetector EdgeHistogramSpecific:NoDistance:NoDistance
FCTH:NoDetector Manhattan:NoDistance:NoDistance

Gabor:NoDetector Euclidean:NoDistance:NoDistance
RegionShape:NoDetector Manhattan:NoDistance:NoDistance
ScalableColor:NoDetector Manhattan:NoDistance:NoDistance
Tamura:NoDetector Manhattan:NoDistance:NoDistance

-q: Specifies the path to the catmap files.

This directory is expected to contain text files that are named after their topic ID. For
instance, 1.txt will contain all query images for topic #1. Each line of the files will
contain one query image path relative to imagedir.

A sample file should look as follows. Although the first line has to be in the file, we can
neglect its meaning for the scope of this document.

#Collection: abc (463); Category: 1
query/query0l.png

-0; -e; -f; -x; -m: Can be ignored.

-c: The path to the collection.xml file. This file contains the metadata to find all
extracted features etc. during the similarity calculations.

-r: Specifies the path to the directory in which all evaluation results in text form (file
ending .treceval) will be stored. These files can be used directly with trec_eval to
calculate various effectiveness metrics (http://trec.nist.gov/trec_eval/).

Two sample lines of a.treceval file:

01 Q0 _query/002 0001.jpg 1 1 AVG QBE:
_query/002 0001.jpg
Tamura:NoDetector Manhattan:NoDistance:NoDistance=1
DominantColor:NoDetector Euclidean:EMD:NoDistance=1



Q101 Q0 P1000512.JPG 2 0.832689 AVG QBE:
_query/002 0001.jpg

Tamura:NoDetector Manhattan:NoDistance:NoDistance=0.989578
DominantColor:NoDetector Euclidean:EMD:NoDistance=0.798366

The fields are separated by tabs with the following semantics (from left to right):

oUW

N

8.

The topic ID

Can be ignored

Retrieved document’s path (relative to imagedir/)

Document’s rank

Document’s similarity score with respect tot he query

Aggregation method (can be ignored, AVG stands for the arithmetic average of all
feature similarities)

The query document

Similarity score with respect to the query using the specified feature...

The similarity scores are in [0;1]. Please note that these files will also contain the query
images that you will have to remove manually. You see this in the first line of the
example: column 3 equals column 7 and the similarity score is 1.0, i.e., a perfect match.

If you are short on hard-disk space you might want to add -z to enable compression of
the result files.



