MIL at ImageCLEF 2014: Scalable System for Image Annotation

Machine Intelligence Laboratory, the University of Tokyo, Japan

Atsushi Kanehira, Masatoshi Hidaka, Yusuke Mukuta, Yuichiro Tsuchiya, Tetsuaki Mano, Tatsuya Harada

Task

- □ Construct image annotation system, which has scalability and high recognition performance
 - Given 500 thousands of images and webpages

Methodology Overview

- ☐ Visual feature
 - Combination of Fisher Vector (FV) and deep convolutional neural network (CNN) based feature
- Label assignment
 - Page title and attributes of image tags
- Linear classifier
 - Passive Aggressive with Averaged Pairwise Loss (PAAPL)

Methodology Overview

- Visual feature
 - Combination of Fisher Vector (FV) and deep convolutional neural network (CNN) based feature
- Label assignment
 - Page title and attributes of image tags
- Linear classifier
 - Passive Aggressive with Averaged Pairwise Loss (PAAPL)

Visual Feature Extraction

- Combination of two types of visual features
 - Fisher Vector as generative feature
 - Deep CNN based feature as discriminative feature
 - These can represent different kinds of information.
- Assuming that
 - These two features mutually compensate for representational ability.
 - Combining different type of features improves performance of annotation system.

- ☐ Improved Fisher Vector [F. Perronnin et al., 2010]
 - 4 local descriptors: SIFT, C-SIFT, GIST, LBP
 - Dimension of FV = 262,144 (64 \times 256 \times 2 \times 8)
 - > Dimension reduction of local feature with PCA: 64
 - Components of GMM: 256
 - > Spatial pyramid: 1x1, 2x2, and 3x1 cells

Extract local descriptor

Dim=64

- Improved Fisher Vector [F. Perronnin et al., 2010]
 - 4 local descriptors: SIFT, C-SIFT, GIST, LBP
 - Dimension of FV = 262,144 (64 \times 256 \times 2 \times 8)
 - > Dimension reduction of local feature with PCA: 64
 - Components of GMM : 256
 - > Spatial pyramid: 1x1, 2x2, and 3x1 cells

Extract local descriptor Soft assignment GMM Component $\mu_1 \sigma_1$ join $\mu_2 \sigma_2$ Component $\mu_2 \sigma_2$ Dim=64 Component $\mu_M \sigma_M$

Machine Intelligence Lab.

- Improved Fisher Vector [F. Perronnin et al., 2010]
 - 4 local descriptors: SIFT, C-SIFT, GIST, LBP
 - Dimension of FV = 262,144 (64 \times 256 \times 2 \times 8)
 - > Dimension reduction of local feature with PCA: 64
 - Components of GMM : 256
 - > Spatial pyramid: 1x1, 2x2, and 3x1 cells

Extract local descriptor Soft assignment GMM Component $\mu_1 \sigma_1$ join f_1 Component $\mu_2 \sigma_2$ join f_n Dim=64 Component μ_M, σ_M join f_n Machine Intelligence Lab.

- ☐ Improved Fisher Vector [F. Perronnin et al., 2010]
 - 4 local descriptors: SIFT, C-SIFT, GIST, LBP
 - Dimension of FV = 262,144 (64 \times 256 \times 2 \times 8)
 - > Dimension reduction of local feature with PCA: 64
 - Components of GMM: 256
 - > Spatial pyramid: 1x1, 2x2, and 3x1 cells

Visual Feature Extraction (deep CNN based feature)

- Deep convolutional neural network (CNN) based feature
 - Extracted from the activation of a pre-trained CNN model
 - Can be re-purposed to other tasks. [J. Donahue et al., 2014]
- □ CNN model includes five convolutional and three fully connected layers. [A. Krizhevsky et al., 2012]

ImageNet Classification with Deep Convolutional Neural Networks In NIPS, Vol. 1, p. 4, A. Krizhevsky et al 2012

Machine Intelligence Lab.

Visual Feature Extraction (deep CNN based feature)

- 4 types of features
 - layer: 6th and 7th
 - activation function: linear and Rectified Linear Unit (ReLU)
 - \triangleright linear: f=x, ReLU: $f=\max(0,x)$
 - dimension: 4096

ImageNet Classification with Deep Convolutional Neural Networks In NIPS, Vol. 1, p. 4, A. Krizhevsky et al 2012

Feature Combination

Combination of Visual Features

Methodology Overview

- ☐ Visual feature
 - Combination of Fisher Vector (FV) and deep convolutional neural network (CNN) based feature
- ☐ Label assignment
 - Page title and attributes of image tags
- Linear classifier
 - Passive Aggressive with Averaged Pairwise Loss (PAAPL)

Label assignment

- \square Extract words T_i related to the image i
 - Page title and src, title, alt attributes of image tag
- \square Extract words W_c related to the concept c
 - Synonyms and hyponyms of the concept c from WordNet
- \square If W_c and T_i have some common words, i is labeled as c.

Label assignment (Example)

Label assignment (Example)

Label assignment (Example)

Methodology Overview

- ☐ Visual feature
 - Combination of Fisher Vector (FV) and deep convolutional neural network (CNN) based feature
- Label assignment
 - Page title and attributes of image tags
- Linear classifier
 - Passive Aggressive with Averaged Pairwise Loss (PAAPL)

- □ Passive Aggressive with Averaged Pairwise Loss (PAAPL) [Y. Ushiku et al., 2012]
 - Extension of Passive Aggressive (PA) for multi-label tasks
 - Fast convergence : handle multiple pairs of concept for one sample
 - Scalability and robustness to outliers

Update rule of PAAPL

Training sample

- · visual feature x,
- \cdot correct labels $\mathbf{y} = (bird, train)$

- 1. Calculate scores of all concepts.
- 2. Pick [min/max]-score from 3. Update the model using [correct/incorrect] labels.
 - hinge-loss.

Update rule of PAAPL

Training sample

- · visual feature x,
- \cdot correct labels $\mathbf{y} = (bird, train)$

1. Calculate scores of all concepts.

- 2. Pick [min/max]-score from 3. Update the model using [correct/incorrect] labels.
 - hinge-loss.

Update rule of PAAPL

Training sample

- · visual feature x,
- \cdot correct labels $\mathbf{y} = (bird, train)$

- 1. Calculate scores of all concepts.
- 2. Pick [min/max]-score from 3. Update the model using [correct/incorrect] labels.
 - hinge-loss.

Update rule of PAAPL

Training sample

- · visual feature x,
- \cdot correct labels $\mathbf{y} = (bird, train)$

1. Calculate scores of all concepts.

2. Pick [min/max]-score from [correct/incorrect] labels.

3. Update the model using

Update rule of PAAPL

Training sample

- · visual feature \mathbf{x}_t
- correct labels y = (bird, train)

1. Calculate scores of all concepts.

2. Pick [min/max]-score from [correct/incorrect] labels.

3. Update the model using

- Update rule of PAAPL
- Hinge-loss

$$I = \begin{cases} 0 & (\text{if } s_p - s_n > 1) \\ 1 - (s_p - s_n) & (\text{otherwise}) \end{cases}$$

Update model

$$\mathbf{w}_{t+1}^{p} = \mathbf{w}_{t}^{p} + \frac{l}{2|\mathbf{x}_{t}|^{2} + \frac{1}{D}}\mathbf{x}_{t}$$

$$\mathbf{w}_{t+1}^{n} = \mathbf{w}_{t}^{n} - \frac{l}{2|\mathbf{x}_{t}|^{2} + \frac{1}{D}}\mathbf{x}_{t}$$

update

Experiment

- ☐ The number of samples
 - Train: 500,000
 - > 121,331 are labeled at validation.
 - > 210,388 are labeled at test.
 - Development : 1,940
 - Test: 7,291
- Decide concepts with scores in the top 4% of all given concepts.
- ☐ 3 experiments
 - 1. To find the best combination of FVs
 - 2. To find the best combination of deep CNN features
 - 3. To try feature combination and compare with single features

Result (FV)

- ☐ Best combination of FVs
 - 4 features (4 local descriptors)
 - Combination of all features achieved the best performance.

result

C-SIFT	GIST	LBP	SIFT	MF-samples (devel)
v				0.286
	~			0.292
		✓		0.284
			✓	0.294
v	~	~		0.347
v	/		/	0.350
v		✓	/	0.348
	/	~	•	0.344
v	/	✓	✓	0.356

Result (FV)

- ☐ Best combination of FVs
 - 4 features (4 local descriptors)
 - > Combination of all features achieved the best performance.

result

C-SIFT	GIST	LBP	SIFT	MF-samples (devel)
/				0.286
	~			0.292
		✓		0.284
			✓	0.294
~	~	✓		0.347
~	~		✓	0.350
~		✓	✓	0.348
	✓	✓	✓	0.344
V	✓	✓	✓	0.356

Combination of more feature is better

Machine Intelligence Lab.

Result (deep CNN based feature)

- ☐ Best combination of deep CNN based features
 - 4 features (layer and activation function)
 - Combination of all features achieved the best performance.

result

6th (ReLU)	6th	7th (ReLU)	7th	MF-samp (devel)
V				0.325
	✓			0.348
		✓		0.346
			✓	0.360
/		✓		0.358
	•		✓	0.371
V			✓	0.356
	~	✓		0.366
V	~	V	~	0.373

Result (deep CNN based feature)

- ☐ Best combination of deep CNN based features
 - 4 features (layer and activation function)
 - Combination of all features achieved the best performance.

result

6th (ReLU)	6th	7th (ReLU)	7th	MF-samp (devel)
✓				0.325
	✓			0.348
		✓		0.346
			✓	0.360
~		✓		0.358
	✓		✓	0.371
✓			✓	0.356
	•	✓		0.366
V	/	V	✓	0.373

Combination of more feature is better

Machine Intelligence Lab.

Result (deep CNN based feature)

- ☐ Best combination of deep CNN based features
 - 4 features (layer and activation function)
 - Combination of all features achieved the best performance.

result

6th (ReLU)	6th	7th (ReLU)	7th	MF-samp (devel)
✓				0.325
	✓			0.348
		✓		0.346
			✓	0.360
✓		✓		0.358
	/		~	0.371
✓			✓	0.356
	✓	✓		0.366
~	~	v	✓	0.373

Linear activation is better than ReLU

Discussion (experiment 1 and 2)

- ☐ The more features combined, the better performance the system have.
- □ ReLU reduces representational ability because it eliminates negative elements.

Result (feature combination)

- Compare performance
 - > FVs and deep CNN based features and combination of them.

result

RUN	4 FVs	4 CNNs	MF-samples (devel)	MF-samples (test)	
1	✓		0.356	0.240	Increase
2		✓	0.373	0.265	0.021 (devel)
3	~	~	0.394	0.275	0.010 (test)

Combined feature is better than single one.

Result (feature combination)

- Compare performance
 - > FVs and deep CNN based features and combination of them.

result

RUN	4 FVs	4 CNNs	MF-samples (devel)	MF-samples (test)	
1	✓		0.356	0.240	Increase
2		•	0.373	0.265	0.038 (devel)
3	✓	•	0.394	0.275	0.035 (test)

Combined feature is better than single one.

Conclusion

☐ Goal

 Construction of image annotation system, which has scalability and high recognition performance

Methodology

- Visual feature : Combination of Fisher Vector and deep CNN based feature
- Label assignment : Page title and attributes of image tag
- Training classifier: Passive Aggressive with Pairwise Loss (PAAPL)

Result

Combination of these features contributes to improvement of recognition performance.

Thank you for kind attention.

Experiment Results – Text Extraction

Experiment of using text around image tag (imageCLEF 2013)

Text around image [max word distance]	MF-samples [%]		Average number of labels
-	26.0	111247	0.6
10	26.1	140448	0.9
100	23.0	186394	2.6
1000	20.7	193971	5.3

Experiment of using Synonym and hyponym (imageCLEF 2013)

Synonym	Hyponym	MF-samples [%]
		23.4
✓		23.2
	✓	26.1
✓	✓	26.6

Update rule of PAAPL

1. Calculate scores of all concepts.

2. Pick min-score from correct labels and max-score from incorrect labels.

3. Update the model using hinge-loss.

