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Task

Construct image annotation system, which has
scalability and high recognition performance
Given 500 thousands of images and webpages

images html files
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Methodology Overview

1 Visual feature

W Combination of Fisher Vector (FV) and deep convolutional neural
network (CNN) based feature

! Label assignment
W Page title and attributes of image tags

! Linear classifier
W Passive Aggressive with Averaged Pairwise Loss (PAAPL)

html Label Label information /
assignment

Visual

JNEEN Visual feature Iiissbl Training linear
extraction classifier
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Visual Feature Extraction

Combination of two types of visual features
Fisher Vector as generative feature

Deep CNN based feature as discriminative feature
- These can represent different kinds of information.

Assuming that

These two features mutually compensate for representational
ability.

Combining different type of features improves performance of
annotation system.
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Visual Feature Extraction (Fisher Vector)

Improved Fisher Vector [F. Perronnin et al., 2010]
4 local descriptors: SIFT, C-SIFT, GIST, LBP
Dimension of FV = 262,144 (64 x 256 x 2 x 8)
Dimension reduction of local feature with PCA : 64

Extract local descriptor

Machine Intelligence Lab.



Visual Feature Extraction (Fisher Vector)

Improved Fisher Vector [F. Perronnin et al., 2010]
4 local descriptors: SIFT, C-SIFT, GIST, LBP
Dimension of FV = 262,144 (64 x 256 x 2 x 8)
Dimension reduction of local feature with PCA : 64
Components of GMM : 256
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Visual Feature Extraction (Fisher Vector)

! Improved Fisher Vector [F. Perronnin et al., 2010]

W 4 local descriptors: SIFT, C-SIFT, GIST, LBP

™ Dimension of FV = 262,144 (64 x 256 x 2 x 8)

» Dimension reduction of local feature with PCA : 64

» Components of GMM : 256

>
Extract local descriptor Soft assignment GMM
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Visual Feature Extraction (Fisher Vector)

Improved Fisher Vector [F. Perronnin et al., 2010]
4 local descriptors: SIFT, C-SIFT, GIST, LBP
Dimension of FV = 262,144 (64 x 256 x 2 x 8)
Dimension reduction of local feature with PCA : 64

Components of GMM : 256
Spatial pyramid : 1x1, 2x2, and 3x1 cells

Feature extraction
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Visual Feature Extraction (deep CNN based feature)

Deep convolutional neural network (CNN) based feature
Extracted from the activation of a pre-trained CNN model
Can be re-purposed to other tasks. [J. Donahue et al., 2014]

CNN model includes five convolutional and three fully
connected layers. [A. Krizhevsky et al., 2012]
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In NIPS, Vol. 1, p. 4, A. Krizhevsky et al 2012 Machine Intelligence Lab.
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Visual Feature Extraction (deep CNN based feature)

4 types of features
layer: 6th and 7th

activation function: linear and Rectified Linear Unit (ReLU)
linear: f=x, ReLU: f=max(0,x)

dimension: 4096

Decaf [J. Donahue et al., 2014] 6th 7th
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1 Combination of Visual Features

Test Image

Feature f, |—>| Classifier W1
Feature f, |—>| Classifier W2

Late fusion
Feature fj |—>| Classifier W3 Averaging ‘Score
Feature f, |—>| Classifier Wwm
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Methodology Overview

1 Visual feature

W Combination of Fisher Vector (FV) and deep convolutional neural
network (CNN) based feature

] Label assignment
B Page title and attributes of image tags

! Linear classifier
W Passive Aggressive with Averaged Pairwise Loss (PAAPL)

html LLabel Label information /
assignment

Visual

JNEEN Visual feature Iiissbl Training linear
extraction classifier
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Label assignment

L1 Extract words T, related to the image i
W Page title and srg, title, alt attributes of image tag

L1 Extract words W, related to the concept ¢
¥ Synonyms and hyponyms of the concept ¢ from WordNet

L1 If W_and T, have some common words, i is labeled as c.

WordNet

Concept ¢ Collect We = {words related to c}
words

Label ¢

Assign

>

Label If|7, N W, #0

> Parse
Webpage XML T: = {words related to i}
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Label a55|gnment (Example)

o
--———---——-—’

'mM

<img src=corgi_2215843b.JPG
title = “All aboard”
alt="All aboard: the Queen and Prince
Edward with one of the family's corgi />

!

T ={Queen, Prince, corgi, family, abroad}

WordNet

C e ot el
= A\t | Label C
Ti1 = {words related to I}
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Label a55|gnment (Example)

o
--———---——-—’

Image ta B
ge tag Dog

<img src=corgi_2215843b.JPG
title = “All aboard”

alt="All aboard: the Queen and Prince [ Get synonyms and hyponyms ]
Edward with one of the family's corgi />

! !

T = {Queen, Prince, corgi, family, abroad} W = {dog, puppy, corgi, ...}

WordNet

o) i We = {words related to C}

Concept C
P words

m
Webpage
T1 = {words related to I}
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Label a55|gnment (Example)

o

'mM

<img src=corgi_2215843b.JPG
title = “All aboard”

a|t="A” aboard: the Queen and Prince [ Get synonyms and hyponyms ]
Edward with one of the family's corgi />

! !

T = {Queen, Prince, corgi, family, abroad} W = {dog, puppy, corgi, ...}

{

[ Judge having common words or not ]<
l WordNet

Have common word: “corgi” o)1 qae | We = {words related to C}
Concept C
words Assion  BZLEEY
Webpage
T1 = {words related to I}
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Methodology Overview

1 Visual feature

W Combination of Fisher Vector (FV) and deep convolutional neural
network (CNN) based feature

! Label assignment
W Page title and attributes of image tags

] Linear classifier
B Passive Aggressive with Averaged Pairwise Loss (PAAPL)

html Label Label information /
assignment

Visual

NN Visual feature Iiisashl Training linear
extraction classifier
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Training linear Classifier (PAAPL)

Passive Aggressive with Averaged Pairwise Loss (PAAPL) [Y. Ushiku
et al., 2012]

Extension of Passive Aggressive (PA) for multi-label tasks
Fast convergence : handle multiple pairs of concept for one sample
Scalability and robustness to outliers

Machine Intelligence Lab.
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Training linear Classifier (PAAPL)

¢ Update rule of PAAPL

Training sample

A : T
- q - visual feature x,

4 ! . -correctlabelsy = (bird, train)

2. Pick [min/max]-score from 3. Update the model using

1. Calculate scores of all concepts. ,
[correct/incorrect] labels. hinge-loss.

4. For all correct labels, repeat 2,3.
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Training sample
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Training linear Classifier (PAAPL)

Update rule of PAAPL

F

1. Calculate scores of all concepts.

Score

Wl

0/00/\@&/«\&

Training sample

2. Pick [min/max]-score from

Score

[correct/incorrect] labels.

onllndr

- correct labels y =

C)@y\@@/(\oy

(bird, train)

22



23

Training linear Classifier (PAAPL)

Update rule of PAAPL

Training sample

f"'
| 5,,! - visual feature x,

_‘r:*/} ., - correct labels y = (bird, train)

2. Pick [min/max]-score from 3. Update the model using
[correct/incorrect] labels. hinge-loss.

AHHHRHC:AHHMH HWHH

1. Calculate scores of all concepts.

Score
Score
Score
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Training linear Classifier (PAAPL)

Update rule of PAAPL

1. Calculate scores of all concepts.

Score

Wl

N @/*\

2.

Score

Training sample

r‘u.
| 5.,! - visual feature x,

i L, ., - correct labels y = (bird, train)

Pick [min/max]-score from 3. Update the model using
[correct/incorrect] labels. hinge-loss.

AHHﬂH

Score

AHWHH

N @/ﬂy & N @/‘\Cy
0) |

4. For all correct labels, repeat 2,3.




Training linear Classifier (PAAPL)

Update rule of PAAPL

s, ¥ |
0 (f 5, -5, >1)

/=< SIO

Hinge-loss

1-(s,-s,) (otherwise)
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Experiment

The number of samples

Train : 500,000
121,331 are labeled at validation.
210,388 are labeled at test.

Development : 1,940
Test : 7,291

Decide concepts with scores in the top 4% of all given concepts.

3 experiments
To find the best combination of FVs

To find the best combination of deep CNN features
To try feature combination and compare with single features

Machine Intelligence Lab.
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Result (FV)

Best combination of FVs
4 features (4 local descriptors)
Combination of all features achieved the best performance.

result

C-SIFT GIST LBP SIFT MF-samples (devel)

v 0.286

v 0.292

v 0.284

v 0.294

v v v 0.347

v v v 0.350

v v v 0.348

v v v 0.344

v v v v 0.356

Machine Intelligence Lab.
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Result (FV)

Best combination of FVs
4 features (4 local descriptors)
Combination of all features achieved the best performance.

result
C-SIFT GIST LBP SIFT MF-samples (devel)
(74 0.286
v 0.292
v 0.284 : :
Combination of
v 0.294 more feature is
% % v 0.347 better
v v v 0.350
v v v 0.348
(74 v (4 0.344
v v v (74 0.356
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Result (deep CNN based feature)

Best combination of deep CNN based features
4 features (layer and activation function)

Combination of all features achieved the best performance.

result

6th (ReLU) | 6th 7th (ReLU) | 7th MF-samp (devel)

v 0.325

v 0.348

v 0.346

v 0.360

v v 0.358

v v 0.371

v 4 0.356

v v 0.366

v v v v 0.373
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Result (deep CNN based feature)

Best combination of deep CNN based features
4 features (layer and activation function)

30

Combination of all features achieved the best performance.

result

6th (ReLU) | 6th 7th (ReLU) | 7th MF-samp (devel)

v 0.325

v 0.348

v 0.346

v 0.360

v v 0.358

v v 0.371

v 4 0.356

v v 0.366

v v v v 0.373

Combination of
more feature is
better

Machine Intelligence Lab.



Result (deep CNN based feature)

Best combination of deep CNN based features
4 features (layer and activation function)
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Combination of all features achieved the best performance.

result

6th (ReLU) | 6th 7th (ReLU) | 7th MF-samp (devel)

v 0.325

v 0.348

v 0.346

v 0.360

v v 0.358

v v 0.371

v v 0.356

v v 0.366

v v v v 0.373

Linear activation
is better than
RelLU

Machine Intelligence Lab.
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Discussion (experiment 1 and 2)

The more features combined, the better performance the
system have.

ReLU reduces representational ability because it eliminates
negative elements.
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Result (feature combination)

Compare performance
FVs and deep CNN based features and combination of them.

result
RUN | 4FVs |4CNNs | MF-samples (devel) | MF-samples (test)
1 v 0.356 0.240 Increase
2 v 0.373 0.265 0.021 (devel)
3 v v 0.394 0.275 0.010 (test)

Combined feature is better than single one.

Machine Intelligence Lab.
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Result (feature combination)

Compare performance
FVs and deep CNN based features and combination of them.

result
RUN | 4FVs |4CNNs | MF-samples (devel) | MF-samples (test)
1 v 0.356 0.240 \ Increase
2 v 0.373 0.265 0.038 (devel)
3 v v 0.394 0.275 4./ 0.035 (test)

Combined feature is better than single one.

Machine Intelligence Lab.
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Conclusion

Goal

Construction of image annotation system, which has scalability and high
recognition performance

Methodology

Visual feature : Combination of Fisher Vector and deep CNN based
feature

Label assignment : Page title and attributes of image tag

Training classifier : Passive Aggressive with Pairwise Loss (PAAPL)

Result

Combination of these features contributes to improvement of
recognition performance.

Machine Intelligence Lab.
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Thank you for kind attention.

Machine Intelligence Lab.
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~ Experiment Results — Text Extraction

 Experiment of using text around image tag (imageCLEF 2013)

Text around
image [max ME-samples [%] Number of images |Average number
word distance] with label of labels

26.0 111247

26.1 140448
100 23.0 186394 2.6
1000 20.7 193971 5.3

e Experiment of using Synonym and hyponym (imageCLEF 2013)

Hyponym | MF-samples [%]

23.4

v 23.2
v 26.1

v v 26.6

Machine Intelligence Lab.
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Training linear Classifier (PAAPL)

Update rule of PAAPL

2. Pick min-score from correct labels
and max-score from incorrect labels.

A A
correct labels

1. Calculate scores of all concepts.

Score
Score

P &IPS P F IS

—
3. Update the model using hinge-loss. 4. For all correct labels, repeat 2,3.

A A I ,

|

A ¥ &P S

Score
Score




