DISA at ImageCLEF 2014: The Search-based Solution for Scalable Image Annotation

> Petra Budikova, Jan Botorek, *Michal Batko*, Pavel Zezula

Outline

- DISA lab introduction
- Our search-based solution to annotation task
- New features
- Experimental results with the new features
- Conclusions

DISA Lab

- Laboratory of Data Intensive Systems and Applications
 - Leader: prof. Pavel Zezula
 - Masaryk university, Czech Republic
 - <u>http://disa.fi.muni.cz/</u>
- Focus on techniques for effective and efficient data management
 - Similarity-based indexing and searching
 - Content-based multimedia processing
 - Distributed data organization

ImageCLEF Scalable Image Annotation Task

- Annotation task definition
 - Input: image + set of candidate concepts
 - Expected result: set of relevant concepts

aerial airplane baby beach bicycle bird boat bridge building car cartoon castle cat chair child church cityscape closeup cloud cloudless coast <u>countryside daytime</u> desert diagram dog drink drum elder embroidery fire firework fish flower fog food footwear furniture garden <u>grass</u> guitar harbor hat helicopter highway <u>horse</u> indoor instrument lake lightning logo monument moon motorcycle mountain nighttime overcast painting park person <u>plant</u> portrait protest rain rainbow reflection river road sand sculpture sea shadow sign silhouette smoke snow soil space spectacles sport sun sunrise/sunset table teenager toy traffic train tricycle truck underwater unpaved wagon water

- 2 datasets
 - Development data: 1940 images, ground truth available
 - Test data: 7291 images, ground truth not available
- Evaluation script provided by organizers precision, recall, F-measure

Our solution

 Search-based annotation with utilization of semantic relationships defined by WordNet

Our solution (cont.)

- Image datasets for similarity-based searching:
 - Profiset: 20M images with high-quality keywords
 - Dataset provided by ImageCLEF organizers ("SCIA trainset"): 500K images from internet, descriptions more noisy, but covers all topics in the contest
- Image content extraction:
 - Combination of 5 MPEG7 global features
- Exploitation of semantic relationships:
 - Synonyms
 - Probability ranking of possible meanings of each word
 - Hypernymy/hyponymy
 - Holonymy/meronymy

New features for image retrieval

- DeCAF₇ visual features
 - Utilization of deep convolutional network
 - Outperformed all participants at ImageNet large scale visual recognition challenge ILSVRC-2012 (Krizhevsky et. al. 2012)
 - Adopted as visual descriptor (Donahue et. al. 2013)
 - Result from the last hidden layer used as 4096-dimensional visual descriptor
 - Similarity using classical L_p metric
 - Gives better results than traditional features on benchmarks from other domains
- Easily used by our similarity-search framework
 - PPP-Codes technique able to index 20M collection of data
 - Real-time response on a common server hardware
 - 8 cores, 8GB RAM, 256GB SSD
- Improved results of our annotation!

Development data

	mP-concept	mR-concept	mF-concept	mP-sample	mR-sample	mF-sample	mAP-sample
Baseline (random)	0.0775	0.0641	0.0498	0.0730	0.0969	0.0722	0.1578
DISA-best with MPEG and Profiset data	0.2954	0.2746	0.2184	0.3044	0.4516	0.3352	0.4268
DISA-best with MPEG and Profiset+SCIA data	0.2919	0.2778	0.2202	0.3052	0.4533	0.3369	0.4281
DISA-best with DeCAF and Profiset data	0.4768	0.4899	0.4165	0.4466	0.6152	0.4825	0.6105
DISA-best with DeCAF and Profiset+SCIA data	0.4928	0.5085	0.4315	0.4534	0.6252	0.4901	0.6196

Test data

	mF-concept	mF-sample	mAP-sample	
Baseline (random)	0.026	0.035	0.088	
DISA-best with MPEG and Profiset data	0.154	0.279	0.316	
DISA-best with MPEG and Profiset+SCIA data	0.191	0.297	0.343	
Competition best	0.547 (0.548)	0.377	0.368 (0.370)	
DISA-best with DeCAF and Profiset+SCIA data	0.411	0.399	0.486 <	\leq

Evaluated by ImageCLEF organizers as a favor after competition deadline

New result evaluation – details

	mF-concept	mF-sample	mAP-sample
DISA-MU 04 (DISA best in competition)	19.1 [17.5–21.8]	29.7 [29.2–30.3]	34.3 [33.8–35.0]
KDEVIR 09 (competition winner)	54.7 [50.9–58.3]	37.7 [37.0–38.5]	36.8 [36.1–37.5]
DISA-MU NEW	41.1 [38.3–44.2]	39.9 [39.3–40.5]	48.6 [47.9–49.3]

System	MAP-samples			MF-samples				MF-concepts					
	all	ani.	food	207	all	ani.	food	207	all	ani.	food	207	unseen
KDEVIR 9	36.8	33.1	67.1	28.9	37.70	29.9	64.9	32.0	54.7	67.1	65.1	31.6	66.1
DISA NEW	48.6	51.0	67.2	32.3	39.90	44.4	48.5	26.7	41.1	N/A	N/A	N/A	44.9
MIL 3	36.9	30.9	68.6	23.3	27.50	20.6	53.1	18.0	34.7	34.7	50.4	16.9	36.7
MindLab 1	37.0	43.1	63.0	22.1	25.80	17.0	45.2	18.3	30.7	35.1	35.3	16.7	34.7
MLIA 9	27.8	18.8	53.6	16.7	24.80	12.1	46.0	16.4	33.2	32.7	37.3	16.9	34.8
DISA 4	34.3	46.6	39.6	19.0	29.70	40.6	31.2	16.9	19.1	23.0	22.3	7.3	19.0
RUC 7	27.5	25.2	44.2	15.1	29.30	28.0	28.2	20.7	25.3	20.1	23.1	10.0	18.7
IPL 9	23.4	30.0	48.5	18.9	18.40	20.2	29.8	17.5	15.8	15.8	33.3	12.5	22.0
IMC 1	25.1	35.7	35.6	12.9	16.30	14.3	21.0	10.9	12.5	10.2	15.1	6.1	11.2
INAOE 5	9.6	6.9	15.0	8.5	5.30	0.4	0.5	6.4	10.3	1.0	0.8	17.9	19.0
NII 1	14.7	23.2	22.0	4.6	13.00	18.9	18.7	4.9	2.3	3.0	2.1	0.9	1.8
FINKI 1	6.9	N/A	N/A	N/A	7.20	8.1	12.3	4.1	4.7	6.3	9.0	2.9	4.7

Evaluation results – influence of semantic links

Development data, similarity search on Profiset only

	mP-concept	mR-concept	mF-concept	mP-sample	mR-sample	mF-sample	mAP-sample
MPEG, basic frequency analysis	0.1824	0.3290	0.1904	0.2383	0.4083	0.2755	0.3467
MPEG, multiple meanings, no links	0.2912	0.2921	0.2240	0.2826	0.3953	0.3032	0.3838
MPEG, multiple meanings, hyper/hypo	0.2915	0.2667	0.2121	0.3008	0.4420	0.3306	0.4211
MPEG, multiple meanings, hyper/hypo and mero/holo	0.2954	0.2746	0.2184	0.3044	0.4516	0.3352	0.4268
Caffe, basic frequency analysis	0.3247	0.4684	0.3360	0.3735	0.4990	0.3962	0.4950
Caffe, multiple meanings, no links	0.4887	0.4881	0.4058	0.4268	0.5561	0.4488	0.5564
Caffe, multiple meanings, hyper/hypo	0.4803	0.4849	0.4149	0.4464	0.6096	0.4808	0.6076
Caffe, multiple meanings, hyper/hypo and mero/holo	0.4768	0.4899	0.4165	0.4466	0.6152	0.4825	0.6105

Conclusions

- Presented modular architecture of DISA annotation tool
 - allows easy replacement of any component
- Our approach is based on nearest-neighbor search not training
 - completely scalable crawled data can be directly indexed
 - no need for ground truth
 - generic vocabulary (keyword) annotation no need to hit predefined classes
- New visual similarity by DeCAF features
 - The new similarity-search component enabled us to increase the quality of annotations by approximately 10-20 % (depending on the quality measure)
 - New DISA results outperform the best results submitted to ImageCLEF 2014 Annotation Challenge in 2 out of 3 quality measures

Questions?

More information about the new feature results can be found here: DISA at ImageCLEF 2014 Revised: Search-based Image Annotation with DeCAF Features. Petra Budikova, Jan Botorek, Michal Batko, Pavel Zezula. Technical Report. Computing Research Repository, <u>http://arxiv.org/abs/1409.4627</u>