Nlab-UTokyo at ImageCLEF 2013 Plant Identification Challenge

Augmenting descriptors for fine-grained categorization

Hideki Nakayama

Graduate School of Information Science and Technology
The University of Tokyo

Contents

- Overview
- Motivation & Problems
- Our solution
- Challenge results
- Conclusion & Discussion

Overview of our participation

- Basically follows a standard object recognition pipeline based on bag-of-features
 - We implemented our recently proposed method for general-purpose fine-grained visual categorization

Hideki Nakayama, "Augmenting descriptors for fine-grained visual categorization using polynomial embedding", *Proc. IEEE ICME*, 2013.

- We focused on extracting powerful image signatures, rather than segmentation and classification algorithms.
 - Obtain strong local descriptors by embedding local spatial information in a supervised learning framework

Fine-grained visual categorization (FGVC)

- Distinguish hundreds of very similar object categories under a specific domain (e.g., species of plants, dogs, birds, etc.)
 - Complementary to traditional object recognition problems
- We need highly discriminative image features

V.S.

Caltech-256 [Griffin et al., 2007]

Two basic ideas

1. Co-occurrence (correlation) of neighboring local descriptors

- Shaplet [Sabzmeydani et al., 2007] Covariance feature [Tuzel et al., 2006] CoHOG [Ito et al., 2010] GGV [Harada et al., 2012]
- © Expected to capture middle-level local information
- Results in high-dimensional local features

How to relax these problems?

- 2. Fisher Vector encoding [Perronnin et al., 201/0]
 - State-of-the-art bag-of-words representation based on higher-order statistics of local features
- © Remarkably high-performance, enables linear classification
- Dimensionality increases in linear to the size of local features

Our approach

- Densely sample local decriptors
- Compress co-occurrence patterns (polynomials) of neighboring local descriptors
 - ⇒ Discriminative latent descriptor
- Encode by means of bag-of-words (Fisher vector)
- Logistic regression classifier

Exploit co-occurrence information

Exploit co-occurrence information

More spatial information can be integrated with more neighbors (but become high-dimensional)

$$\mathbf{p}_{(x,y)}^{2} = \begin{pmatrix} \mathbf{v}_{(x,y)} \\ upperVec(\mathbf{v}_{(x,y)} \mathbf{v}_{(x,y)}^{T}) \\ Vec(\mathbf{v}_{(x,y)} \mathbf{v}_{(x-\delta,y)}^{T}) \\ Vec(\mathbf{v}_{(x,y)} \mathbf{v}_{(x+\delta,y)}^{T}) \end{pmatrix}$$

2-neighbors 10,336dim

$$\mathbf{p}_{(x,y)}^{4} = \begin{pmatrix} \mathbf{v}_{(x,y)} \\ upperVec(\mathbf{v}_{(x,y)} \mathbf{v}_{(x,y)}^{T}) \\ Vec(\mathbf{v}_{(x,y)} \mathbf{v}_{(x,y-\delta)}^{T}) \\ Vec(\mathbf{v}_{(x,y)} \mathbf{v}_{(x-\delta,y)}^{T}) \\ Vec(\mathbf{v}_{(x,y)} \mathbf{v}_{(x+\delta,y)}^{T}) \\ Vec(\mathbf{v}_{(x,y)} \mathbf{v}_{(x,y+\delta)}^{T}) \end{pmatrix}$$

4-neighbors 18,528dim

Supervised dimensionality reduction to compress polynomial vector

Training set: patch features (polynomial vectors) and category labels

- Strong supervision assumption
 - Most patches should be related to the category
 - (Somewhat) justified for FGVC considering the applications
 - Users will more or less target the object

Supervised dimensionality reduction

□ Canonical Correlation Analysis (CCA) [Hotelling, 1936]

p: patch feature (polynomials), **l**: label feature

CCA finds linear transformations

 $\mathbf{s} = A^T (\mathbf{p} - \overline{\mathbf{p}}), \mathbf{t} = B^T (\mathbf{l} - \overline{\mathbf{l}})$ that maximize the correlation between \mathbf{s} and \mathbf{t}

$$C_{pl}C_{ll}^{-1}C_{lp}A = C_{pp}A\Lambda^2 \quad \left(A^TC_{pp}A = I\right)$$

C: covariance matrices

 Λ : canonical correlations

Latent descriptor

$$\mathbf{s} = A^{T} \left(\mathbf{p} - \overline{\mathbf{p}} \right)$$
64 dim
1,000 ~
10,000 dim

Fisher Vector [Perronnin et al., 2010]

 State-of-the-art bag-of-words encoding method using higher-level statistics of descriptors (mean and var)

http://www.image-net.org/challenges/LSVRC/2010/ILSVRC2010_XRCE.pdf

Fisher Vector Gradient wrt w

[.15 -.2 -.35 .2]

Gradient wrt mean

[.8 -1.5 -3.7 -1.3 -3.8 1.2 -.9 1.4]

Gradient wrt var

[-1.2 -.9 1.4 -.8 1.5 -3.7 1.3 -3.8]

Our final system

- Combine multiple descriptors in late-fusion approach (SIFT, C-SIFT, Opp.-SIFT, HSV-SIFT, Self similarity)
- Sum of log-likelihoods output by each classifier

Plant Identification Challenge

Challenge Overview

- ☐ Identify 250 plant species from images of different organs (Leaf, Flower, Fruit, etc.)
- □ Two main categories:
 - Sheet As Background
 - Natural Background

"Natural Background" has more generic nature (e.g, cluttered background, view, etc.) and is the primary interest in our participation

http://www.imageclef.org/2013/plant

Setup

Our submitted runs

We trained classifiers independently for each (sub)category

- Run 1: All
- Run 2: SheetAsBackground + NaturalBackground
- Run 3: SheetAsBackground + Leaf, Flower, Fruit, Stem, Entire

Validation

- We used roughly 10% of training samples (in terms of individual plants) for validation set
- Parameter tuning and selection of local descriptors

Results on the validation set

- Our method consistently improves the performance from the baseline for all descriptors & domains.
- Particularly effective for Natural Background task.

Standard implementation of Fisher Vector.

Used descriptor types and classification rates (%) on the validation set.

		SIFT	C-SIFT	Opp SIFT	HSV-SIFT	SSIM	Baseline	Ours	Rel. Imp. (%)
Run 1	All	'	V	V	V		38.2	38.8	1.6
Run 23	SB	'					50.8	52.5	3.3
Run 2	NB		V	V	•	•	15.9	17.8	11.9
Run 3	Leaf		V	V	•	•	15.2	17.3	13.8
Run 3	Flower		V	V	•	•	21.2	24.7	16.5
Run 3	Fruit		V	V	•	•	7.4	11.1	50.0
Run 3	Stem		V	V	•	•	13.8	16.5	19.6
Run 3	Entire		V	•	'	•	8.2	8.5	3.7

Final results

■ We achieved:

- The 1st place in NaturalBackground category (and 4/5 subcategories). Run 3
- The 3rd place in SheetAsBackground category. Run 1

Conclusion

- □ A simple but effective method for FGVC
 - Embedding co-occurrence patterns of neighboring descriptors.
 - Obtain discriminative and small-dimensional latent descriptor to make Fisher vector encoding feasible.
 - Particularly effective for Natural Background task.
- Patch-level strong supervision approximation
 - Not always perfect but reasonable for FGVC problems.
- Discussion
 - Standard object recognition approach is not bad, as the task becomes more general.
 - Features are the most important key to success, of course better segmentation & classification algorithms should be implemented as well.

Implementation Details

- Low-level descriptors
 - SIFT, C-SIFT, Opponent-SIFT, HSV-SIFT, Self Similarity
 - Dense sampling (5 pixels apart)

http://koen.me/research/colordescriptors/ http://www.robots.ox.ac.uk/~vgg/software/SelfSimilarity/

- ☐ Fisher Vector
 - 64 Gaussians (visual words)
 - Entire image + 3 horizontal spatial regions

http://lear.inrialpes.fr/src/inria fisher/

- Classifier
 - Logistic regression (LIBLINEAR)
 - Average scores of multiple classifiers

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

Experimental setup

- **FGVC Datasets**
 - Oxford-Flowers-102
 - Caltech-Bird-200

- Descriptors
 - SIFT, C-SIFT, Opponent-SIFT, Self Similarity
 - Compressed into 64dim using several methods
- Fisher Vector
 - 64 Gaussians (visual wods)
 - Global + 3 horizontal spatial regions
- Classifier
 - Logistic regression
- Evaluation
 - Mean classification accuracy

Results: comparison with PCA and CCA

- Our method substantially improves performance for all descriptors
- Just applying CCA to concatenated neighbors does not improve performance
 - Polynomial embedding makes sense (non-linear convolution)

Classification performance (%) with different embedding methods (all 64dim)

Results: number of neighbors

Including more neighbors improves performance

Classification performance (%) of our method with different number of neighbors

Comparison on FGVC datasets

 Our method outperforms previous work on bird and flower datasets

Mean classification accuracy (%)

	Flowers	Birds	
4 desc. (PCA)	81.6	23.9	← baseline
4 desc. (PCA) 4 desc. (PolEmb)	87.2	28.1	
8 desc. (PCA+PolEmb)	85.7	28.8	
Previous Work	85.6 [32]	28.2 [33]	
	80.0 [34]	26.7 [32]	
	76.3 [35]	26.4 [36]	
	73.3 [37]	22.4 [37]	
		19.2 [31]	
		19.0 [38]	
		18.0 [7]	

For the bird dataset, [32] uses the bounding box only for training images, therefore the result is not directly comparable to ours.