MIL at ImageCLEF 2013: Scalable System for Image Annotation

Machine Intelligence Laboratory, the University of Tokyo, Japan

Masatoshi Hidaka

Naoyuki Gunji

Tatsuya Harada

Scalable Concept Image Annotation Task

• To make image annotation system from wild web data

Contents

- Scalable Concept Image Annotation Task
 - Image Feature; Fisher Vector, state-of-the-art
 - Textual Feature; our original method which supports concept set change
 - Multilabel Annotation Learning; PAAPL, scalable to the dataset size

Image Feature – Fisher Vector [Perronnin et al., 2010]

- Local descriptor
 - SIFT, C-SIFT, GIST, LBP are used separately
 - Using GIST not for global image feature, but for local descriptor
- Statistic calculation
 - Calculate local descriptors $\{x_1, x_2, ..., x_N\}$ statistic using Gaussian Mixture Model w_i, μ_i, Σ_{i_N} calculated by random sample in dataset beforehand

$$u_i = \frac{1}{N\sqrt{w_i}} \sum_{n=1}^{N} \gamma_n(i) \mathbf{\Sigma}_i^{-\frac{1}{2}}(\mathbf{x}_n - \boldsymbol{\mu}_i) \qquad \text{Average}$$

$$v_i = \frac{1}{N\sqrt{2w_i}} \sum_{n=1}^{N} \gamma_n(i) [\mathbf{\Sigma}_i^{-1} \mathrm{diag}((\mathbf{x}_n - \boldsymbol{\mu}_i)(\mathbf{x}_n - \boldsymbol{\mu}_i)^T) - \mathbf{1}] \qquad \text{Variance}$$

$$\text{Local} \qquad \text{Descriptor} \qquad \text{Statistic} \qquad \text{Normalization} \qquad \text{Spatial} \qquad \text{Feature} \qquad \text{Vector}$$

Image Feature – Fisher Vector [Perronnin et al., 2010]

- Normalization
 - FV representation: $G = [\boldsymbol{u}_1^T, \boldsymbol{v}_1^T, ..., \boldsymbol{u}_K^T, \boldsymbol{v}_K^T]^T$
 - Power normalization: $sign(\mathbf{G})|\mathbf{G}|^{1/2}$
- Spatial Information
 - Calculate FVs for divided 8 areas and concatenate them

$$\boldsymbol{G} = [\boldsymbol{G}_1^T, \boldsymbol{G}_2^T, \dots, \boldsymbol{G}_8^T]^T$$

• The dimension of our FV is 262144

 \boldsymbol{G}_1

G_2	G_3
G_{4}	G_{5}

G_6	
G_7	
G_8	

Textual Feature – Pipeline

- Supporting concepts of both development and test set is required
- Use WordNet [Fellbaum, 1998] as an external source
- Fast and significantly improves performance

Textual Feature – Text Extraction

- Webpage is NOT concentrating on one image
 - Range of text corresponding to the image is limited
- Parse XML and extract elements
 - Page Title
 - Img tag attributes (filename, alternative text, title)
 - Text displayed near the image
- Select text closely related to the image
- Regard text as a set of words T
 - Not considered about grammar

The popular Bahamas Dolphin Encounters specializes in creating opportunities for humans to interact safely with dolphins.

T = {swim, with, dolphin, bahama, encounter, ...}

Image related words

Textual Feature – Label Estimation

• Simplest method (used in ImageCLEF 2012) [Ushiku et al., 2012]

Textual Feature – Label Estimation

• Problem: related word cannot be used

- Using related words are important
- [Jin et al., 2005] used semantic distance from WordNet to remove irrelevant keywords from annotation
- [Villegas et al., 2012] used words from definition of concept in English dictionary and constructed probabilistic model
- We try to collect more concept related words simply

Textual Feature – Word Collection

- Collect words W_C related to each concept C
- Use synonyms and hyponyms of the concept word
 - Quite simpler than other methods (e.g. Google Distance)

C = food

 $W_{food} = \{\text{food, nutrient, drink, milk, ...}\}$

Textual Feature – Label Assignment

 A label is assigned to the image if image related words contains any of concept related words

From webpage

T = {pigeon, on, a, tree} (image related words)

$$W_{bird}$$
 = {bird, parrot, pigeon}

 W_{food} = {food, nutrient, drink}

$$W_{plant} = \{ plant, tree, rose \}$$

From WordNet

Estimated labels

Online Multilabel Annotation Learning

- To make system scalable, linear model based approach is adopted
 - K-NN based approach: complexity of recognizing is O(N) (N is dataset size)
 - Kernel based approach: complexity of learning is $O(N^2)$
- PAAPL: Passive Aggressive with Averaged Pairwise Loss [Ushiku et al., 2012]
- Passive Aggressive [Crammer et al., 2006] based method
 - Online; requires less RAM
 - Robust to noise of label data
- Converges faster than original PA in multilabel learning

- ullet Update models $oldsymbol{\mu}^{\mathcal{C}}$ sequentially for each training sample by following
 - $lue{lue}$ Fetch training sample; image feature $oldsymbol{f}$, assigned labels Y , not assigned labels $ar{Y}$
 - Find a label r in Y, a label s in \overline{Y} by follows

Mistakenly low scored label

$$r = \underset{r \in Y}{\operatorname{argmin}} \boldsymbol{\mu}^{r} \cdot \boldsymbol{f}$$

$$s = \underset{s \in \overline{Y}}{\operatorname{argmax}} \boldsymbol{\mu}^{s} \cdot \boldsymbol{f}$$
Score

ullet Calculate hinge-loss l and update models according to PA

$$l = \max(1 - (\mu^{r} \cdot f - \mu^{s} \cdot f), 0)$$

$$\mu_{new}^{r} = \mu^{r} + l/(2|f|^{2} + 1/D) \cdot f$$

$$\mu_{new}^{s} = \mu^{s} - l/(2|f|^{2} + 1/D) \cdot f$$

- Repeat above for previously not selected labels
 - · This procedure is not in original PA

- ullet Update models $oldsymbol{\mu}^{\mathcal{C}}$ sequentially for each training sample by following
 - Fetch training sample; image feature f, assigned labels Y, not assigned labels \bar{Y}
 - Find a label r in Y, a label s in \overline{Y} by follows

Mistakenly low scored label

$$r = \underset{r \in Y}{\operatorname{argmin}} \mu^{r} \cdot f$$

$$s = \underset{s \in \overline{Y}}{\operatorname{argmax}} \mu^{s} \cdot f$$
Score

$$l = \max(1 - (\mu^{r} \cdot f - \mu^{s} \cdot f), 0)$$

$$\mu_{new}^{r} = \mu^{r} + l/(2|f|^{2} + 1/D) \cdot f$$

$$\mu_{new}^{s} = \mu^{s} - l/(2|f|^{2} + 1/D) \cdot f$$

- Repeat above for previously not selected labels
 - · This procedure is not in original PA

S

- Update models μ^{C} sequentially for each training sample by following
 - Fetch training sample; image feature f, assigned labels Y, not assigned labels Y
 - Find a label r in Y, a label s in \overline{Y} by follows

Mistakenly low scored label

$$r = \underset{r \in Y}{\operatorname{argmin}} \boldsymbol{\mu}^r \cdot \boldsymbol{f}$$
$$s = \underset{s \in \bar{Y}}{\operatorname{argmax}} \boldsymbol{\mu}^s \cdot \boldsymbol{f}$$

$$\mu_{new}^r = \mu^r + l/(2|f|^2 + 1/D) \cdot f$$

$$\mu_{new}^s = \mu^s - l/(2|f|^2 + 1/D) \cdot f$$

- Repeat above for previously not selected labels
 - This procedure is not in original PA

S

- ullet Update models $oldsymbol{\mu}^{\mathcal{C}}$ sequentially for each training sample by following
 - Fetch training sample; image feature f, assigned labels Y, not assigned labels \overline{Y}
 - Find a label r in Y, a label s in \overline{Y} by follows

Mistakenly low scored label

$$r = \underset{r \in Y}{\operatorname{argmin}} \mu^{r} \cdot f$$

$$s = \underset{s \in \overline{Y}}{\operatorname{argmax}} \mu^{s} \cdot f$$
Score

• Calculate hinge-loss l and update models according to PA

$$l = \max(1 - (\mu^{r} \cdot f - \mu^{s} \cdot f), 0)$$

$$\mu_{new}^{r} = \mu^{r} + l/(2|f|^{2} + 1/D) \cdot f$$

$$\mu_{new}^{s} = \mu^{s} - l/(2|f|^{2} + 1/D) \cdot f$$

- Repeat above for previously not selected labels
 - This procedure is not in original PA

PAAPL – Advantages

- Score computation process is heavy part of PA
 - PAAPL updates all pairs of models by one score computation
 - It makes convergence faster
- To make faster, random sampling is adopted

Multiple Feature Score Combination

- Scores of models which were learned by different image features are summed in annotation step
 - Which combination is best is evaluated by experiment

Experiment Condition

- We applied these methods to ImageCLEF 2013 dataset
- Experiment order
 - 1. Label estimation condition (whether to use synonyms and hyponyms)
 - 2. Text extraction condition (whether to use page title etc.)
 - 3. Comparison of image local descriptors and their score combination
- Image feature for first two experiment is provided C-SIFT + BoVW
- Evaluation was done by F-measure for development set
- Submitted runs are computed with best parameters for development set

Experiment Results – Label Estimation

Whether we should use synonyms and hyponyms

Using both synonyms and hyponyms is the best

Experiment Results – Text Extraction

What elements of webpages we should use (best 3 & baseline shown)

Text around image [max word distance]	Img ta attribu			ile	MF-samples [%]		Number of images with label
-	✓				27.6		80009 [lowest]
10	✓				26.6		129050
10	✓		✓		26.1	+ 7pts	140448
1000	✓		✓		20.7		193971

- Text around image (max distance 10 words)
- Img tag attributes

Experiment Results – Image Local Descriptor

Best 5 combinations and 4 single features (Fisher Vector applied)

C-SIFT	GIST	LBP	SIFT	MF-samples [%]		Test set MF-samples		·
✓	✓		✓	34.6 [ISI-1]		33.2		
✓	✓	✓	✓	34.3 [ISI-2]		32.7		Cularaittad
✓	✓	/		34.2 [ISI-3]		31.8		Submitted
	✓		✓	34.0 [ISI-4]		32.4		runs
	✓	✓	✓	33.9 [ISI-5]		31.7		
✓				31.2		7		
	✓			32.4	+	- 7pts		GIST is the
		✓		27.9				best among single
			✓	31.1				descriptor
Provide	d C-SIF	T + Bo	VW	27.6				

Conclusion

- Visual Feature
 - Fisher Vector with four local descriptors was used and the combination of C-SIFT, GIST and SIFT showed superior performance than provided C-SIFT + BoVW
- Textual Feature
 - Using synonyms and hyponyms for label estimation improved performance
 - Selecting text related to image also highly improved performance
 - Img tag attributes were the most important
 - Worked well in concepts of both development set and test set
- Learning
 - The method which is scalable to the size of dataset was adopted

Experiment Results – Text Extraction (All)

Text around image [max word distance]	Img tag attributes	Page title	IIVIE-camniec I%I		Average number of labels
10			25.4	113802	0.7
100			23.1	183545	2.5
1000			20.2	192210	5.2
-	✓		27.6	80009	0.4
10	✓		26.6	129050	0.8
100	✓		23.8	185471	2.5
1000	✓		21.3	193170	5.3
-		✓	24.6	92254	0.5
10		✓	25.5	134318	0.9
100		✓	22.9	185471	2.5
1000		✓	20.5	193497	5.3
-	✓	✓	26.0	111247	0.6
10	✓	✓	26.1	140448	0.9
100	✓	✓	23.0	186394	2.6
1000	✓	✓	20.7	193971	5.3

Textual Feature – Implementation Detail

- Text Extraction
 - Words are singularized by ActiveSupport library
- Word Collection
 - Used synset of synset id specified in the concept list
 - Ambiguous words (words of multiple meaning) are not used as related words
 - The word which appears in multiple synset in WordNet is judged to be ambiguous
 - Hyponyms are gathered from all depths from the synset of concept