UNT at ImageCLEF 2011: Relevance Models and Salient Semantic Analysis for Image Retrieval

Miguel E. Ruiz** Chee Wee Leong and Samer Hassan

University of North Texas, Denton, Texas, USA

**Currently at Nuance Communications Inc.

Goals

- Test corpus based methods to do semantic query expansion
- Identify terms that are more likely to describe an image ("picturable")
- Explore relevance models and structured queries

Salient Semantic Analysis

- SSA (Hassan & Mihalcea, 2011)finds semantic similarity between words based on salient content links from a corpus such as Wikipedia.
 - "Plants are Life living <u>organisms</u> belonging to the <u>kingdom</u> Plantae. Precise definitions of the kingdom vary, but as the term is used here, plants include familiar organisms such as <u>trees</u>, <u>flowers</u>, <u>herbs</u>, <u>bushes</u>, <u>grasses</u>, <u>vines</u>, <u>ferns</u>, <u>mosses</u>, and <u>green algae</u>."
 - The term "plants" is represented by a weighted vector:
 < living organisms 0.85, kingdom 0.6, trees 0.85, flowers 0.85, herbs 0.7, bushes 0.7, grasses 0.8, vines 0.6, ferns 0.8, mosses 0.8, green algae 0.7>

Salient Semantic Analysis

- Formally, given
 - a corpus C with m tokens
 - vocabulary of size N
 - concept size W (no. of unique Wikipedia concepts)
 - A N x W term-by-concept matrix (P) is generated, where

$$P_{ij} = \log_2 \frac{f^k(w_i, c_j) \times m}{f^C(w_i) \times f^C(c_j)}$$

• To calculate the semantic relatedness between two words/texts, A and B,

$$Sim(A,B) = \begin{cases} 1 & Score_{cos}(A,B) > \lambda \\ Score_{cos}(A,B)/\lambda & Score_{cos}(A,B) \leq \lambda \end{cases}$$

where

$$Score_{cos}(A,B) = \frac{\sum_{y=1}^{N} (P_{iy} * P_{jy})^{\gamma}}{\sqrt{\sum_{y=1}^{N} P_{iy}^{2\gamma} * \sum_{y=1}^{N} P_{jy}^{2\gamma}}},$$

 γ = weight bias

 λ = normalization factor

Salient Semantic Analysis

- Semantic association between two terms or between two pieces of text SSA uses
- Compute a similarity value based on the cooccurrence with in a window of size k in a given corpus (Wikipedia).
- The similarity value is controlled by a parameter (λ)
 - \circ λ is a threshold of the semantic gap between terms that are perfect synonyms (e.g., tiger-tiger) and near synonyms (e.g., tiger-feline) .

Flickr Picturability

- Flickr Picturability (Leong et al., 2001)Based on rewarding terms that match tags assigned to images in Flickr.
- Method:
 - build a corpus with the top Flickr tags most related to the query
 - weights them according to the co-occurrence of the term in the contexts of other query terms

Collection Preparation

- Translated captions and Wikipedia text from French and German into English using Bing.
- Used Indri to index collection using a language model representation:
 - Unigram model
 - Krovetz stemmer
 - Stopwords

Query Expansion

- Step 1: Generate list of candidates
 - Find candidates using SSA
 - Compute Flickr picturability score
 - Compute weights using the formula
 - Weight(wi) = tf (wi) * 1/rank(wi) * flickr(wi)
- Step 2: Ensure semantic focus
 - Select terms with SSA similarity above a threshold $(Sim(Q,w) \ge \alpha)$

Retrieval Model

- Inspired on Lavrenko's Relevance models (Pseudo-relevance feedback for Language modes)
- Weighted_query = β Q_original + (1- β) Q_expansion
- We used $\beta = 0.5$

Results

Run name	FB/QE	MAP	P10	P20	Rprec	Bpref
Baseline (unofficial)		0.2621	0.5493	0.4434	0.2900	0.2522
2011_SSA50	QE	0.2143	0.3260	0.2900	0.2438	0.2027
UNTESU_SSA150rf	QEFB	0.2292	0.3120	0.2810	0.2476	0.2050
2011_SSA50_FB	FB	0.2327	0.3160	0.2860	0.2543	0.2113
UNTESU_SSA150W	QE	0.2577	0.4060	0.3510	0.2835	0.2401
UNTESU_SSA50Wrf	QEFB	0.2794	0.4240	0.3630	0.3107	0.2647
UNTESU_SSA150Wrf	FB	0.2820	0.4200	0.3610	0.3190	0.2679
UNTESU_BLRF	FB	0.2866	0.4220	0.3650	0.3276	0.2821

Conclussions

- The proposed SSA and Flicker picturability prove to be quite good for expanding hard queries.
- Weighted structured queries and relevance feedback are quite important for retrieval performance in query expansion.

To do:

- Incorporate word sense disambiguation.
- Better handling of phrases and compound terms(e.g. "close up")

Acknowledgement

Thanks to

- Language Information Technology group at UNT (Rada Mihalcea)
- Nuance Communication for supporting my attendance to CLEF.