



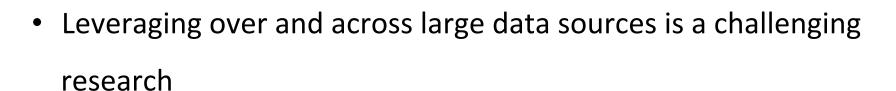
# Overview of the ImageCLEF 2014 Domain Adaptation Task

Barbara Caputo<sup>1</sup>, Novi Patricia<sup>2</sup>

<sup>1</sup>University of Rome La Sapienza, Italy

<sup>2</sup>Idiap Research Institute, Switzerland




# DomainAdaptation@ImageCLEF2014: Outline

- Introduction & Motivation
- DomainAdaptation@ImageCLEF2014: The Task
  - ☐ Challenges
  - ☐ Data & Features
- Participants and Results
- Analysis
- Conclusions



## Introduction & Motivation

The amount of annotated image collections is increased over the
 last years
 Amazon Mechanical Turk



 For a given task, training on a dataset (e.g. PASCAL VOC) and testing on another (e.g. ImageNet) produces a poor result, although learning same categories



## Introduction & Motivation

- The problem to generalize object categorization across databases is known as the *domain adaptation* challenge
- A source domain (S) has a large amount of labeled images
- A target domain (T) has different image set, and few or no labeled samples
- Formally:

two domains *differ*  $\rightarrow$  probability distributions are *different* 

$$P_S(x,y) \neq P_T(x,y)$$



# **Domain Adaptation Task**



Current research focuses on:

- ☐ The source consists of one or maximum two databases
- ☐ The labels on both domain are the same
- ☐ The number of annotated training data for target domain are



# **Domain Adaptation Task**



Current research focuses on:

## Not realistic settings!!

- ☐ The source consists of one or maximum two databases
- ☐ The labels on both domain are the same
- ☐ The number of annotated training data for target domain are

limited



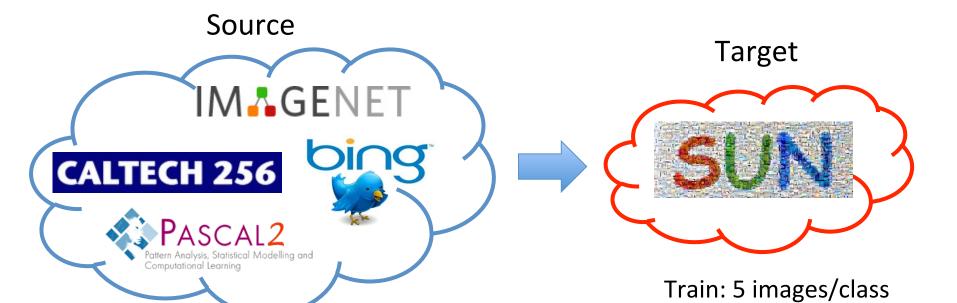
# DomainAdaptation@ImageCLEF2014: Challenges

- General settings existed in the community:
  - ☐ One source, one target: Gong et al., CVPR 2012
  - ☐ At most **two** sources, one target: Saenko et al., ECCV 2010
- DomainAdaptation@ImageCLEF2014 (1st edition): focus on the

#### number of sources

- ☐ 4 sources
- ☐ existing available resources
- ☐ semi-supervised setting (limited samples)




#### Data

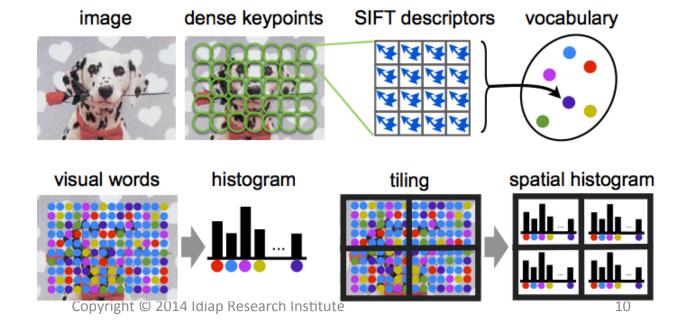
- Publicly available databases:
  - ☐ Caltech-256: 256 categories, 30607 images
  - ☐ ImageNet (ILSVRC2012): WordNet hierarchy, 500 images/node
  - ☐ PASCAL VOC2012: 20 classes
  - ☐ Bing: 256 categories, collected using Bing search engine
  - ☐ SUN: scene understanding, 899 categories, 130.519 images
- 12 common classes: aeroplane, bike, bird, boat, bottle, bus, car, dog, horse, monitor, motorbike, and people



## **Evaluation Metrics**

| Correctly classified image | Misclassified image |
|----------------------------|---------------------|
| +1 points                  | +0 points           |




Train: 50 images/class

Test: 50 images/class



#### **Features Extraction**

- Dense SIFT descriptors
- Grid of 128 pixels
- Quantized into 256 visual words → 1024 dimension
- www.vlfeat.org





## **Participants**

- 19 groups registered
- 3 groups submitted runs
  - ☐ XRCE: combine several heterogeneous domain adaptation methods, use majority voting to improve overall accuracy
  - ☐ Hubert Curien Lab: no working notes
  - ☐ Idiap Research Institute: treat source classifier as experts, then combine the output confidence with high-level cue integration



# Results

## Total score

| Rank | Group                   | Score |
|------|-------------------------|-------|
| 1    | XRCE                    | 228   |
| 2    | Hubert Curien Lab Group | 158   |
| 3    | Idiap                   | 45    |

## Score per class

| class      | Score XRCE | Score Hubert Curien | Score Idiap |
|------------|------------|---------------------|-------------|
| aereoplane | 41         | 36                  | 3           |
| bike       | 12         | 7                   | 1           |
| bird       | 15         | 15                  | 0           |
| boat       | 18         | 5                   | 4           |
| bottle     | 20         | 25                  | 3           |
| bus        | 23         | 10                  | 6           |
| car        | 17         | 13                  | 7           |
| dog        | 8          | 8                   | 3           |
| horse      | 17         | 6                   | 2           |
| monitor    | 28         | 15                  | 3           |
| motorbike  | 12         | 7                   | 3           |
| people     | 17         | 11                  | 10          |



# **Analysis**

- XRCE shows that the current methods are not able to address effectively the problem of leveraging over multiple sources
- Ensemble methods appear instead to be a viable option in the realistic condition, whether:
  - combine the output of various DA algorithms, or
  - combine several sources output confidence
- Enough interest from the participants (19 groups registered)
- Pre-computed features did not allow flexibility



## Wrapping up

- The 1<sup>st</sup> edition of DA Task focused on the problem of building a classifier in a target domain while leveraging over 4 sources
- Ensemble learning based method is able to tackle the problem

#### Next year competition:

- Provide raw images a wider generality of approaches
- Multiple sources, possibly by augmenting the number of classes
- Partial overlap of classes between domains